
C'è una sola risposta corretta per ogni domanda

Lo spazio bianco sul retro del foglio può essere usato per scrivere se necessario

- 1) L'uscita z della rete disegnata sopra:
 - a) Va ad 1 per circa Δ dopo il fronte di salita di x
 - b) Va ad 1 per circa Δ dopo il fronte di discesa di x
 - c) Va a 0 per circa Δ dopo il fronte di salita di x
 - d) Nessuna delle precedenti

	00	01	11	10
00	-	0	1	1
01	0	0	1	-
11	0	0	0	0
10	-	1	0	-

- 2) Nella mappa di Karnaugh sopra disegnata gli implicanti principali essenziali sono
 - a) 1
 - b) 2
 - c) 3
 - d) Nessuna delle precedenti
- 3) Se in una sintesi SP dell'uscita z sostituisco le porte AND ed OR con il loro equivalente a NOR ottengo:
 - a) Una sintesi di z, a due livelli di logica
 - b) Una sintesi di z, ma non a due livelli di logica
 - c) Una sintesi di \bar{z} , a due livelli di logica
 - d) Nessuna delle precedenti

- 4) Il blocco di codice scritto sopra copia il contenuto della memoria dall'intervallo di indirizzi *X* all'intervallo di indirizzi *Y*, dove:
 - a) $X \equiv [s, s + 1023], Y \equiv [d, d + 1023]$
 - b) $X \equiv [s, s + 2047], Y \equiv [d, d + 2047]$
 - c) $X \equiv [s 1023, s], Y \equiv [d 1023, d]$
 - d) Nessuna delle precedenti

qui:

- 5) Il codice sopra non prosegue all'etichetta qui se AL:
 - a) è uguale a 1111 1111
 - b) Ha tutti i 7 bit meno significativi pari a 0
 - c) contiene la rappresentazione di un numero pari
 - d) Nessuna delle precedenti

- 6) Nella rappresentazione in base $\beta>2$ (β pari) su n>2 cifre del numero naturale $\frac{\beta^{n-1}}{2}+1$ ci sono
 - a) n cifre diverse da 0
 - b) n-1 cifre diverse da 0
 - c) 1 cifra diversa da 0
 - d) Nessuna delle precedenti

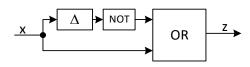
7)
$$|a \cdot x + b|_{\beta} =$$

a) =
$$|a \cdot x + b|_{\beta}$$

b) =
$$|a|_{\beta} \cdot |x|_{\beta} + |b|_{\beta}$$

c) =
$$|a \cdot x + b|_{\beta} + \beta$$

d) Nessuna delle precedenti


- 8) Un sommatore a due cifre in base 6 ha in ingresso $X = 101\ 101$, $Y = 101\ 101$, $C_{in} = 0$. Lo stato di uscita è:
 - a) $Z = 011\ 010, C_{out} = 1, Ow = 1$
 - b) $Z = 011 \ 010, C_{out} = 1, Ow = 0$
 - c) $Z = 101\ 100, C_{out} = 1, Ow = 0$
 - d) Nessuna delle precedenti
- 9) Devo dividere un numero $X \in [100, 600]$ per un divisore $Y \in [2, 15]$. Posso usare un modulo divisore per naturali in base 2 così dimensionato:
 - a) dividendo su 10 bit, divisore su 4 bit
 - b) dividendo su 13 bit, divisore su 4 bit
 - c) dividendo su 16 bit, divisore su 8 bit
 - d) Nessuna delle precedenti
- 10) Dati *A* e *B*, rappresentazioni in complemento alla radice dei numeri interi *a* e *b*,
 - a) A < B implies the a < b
 - b) $A \leq B$ implies the $a \leq b$
 - c) A > B implica che a < b
 - d) Nessuna delle precedenti

	Domande di Reti Logiche – prima prova in itinere 14/11/2025 – primo turno
	Cognome e nome:
	Matricola:
•	
💙 - cuori	

C'è **una sola risposta** corretta per ogni domanda Lo spazio bianco sul retro del foglio può essere usato per scrivere se necessario

- 1) Nella rappresentazione in base $\beta>2$ (β pari) su n>2 cifre del numero naturale $\frac{\beta^{n-1}}{2}+\frac{\beta^{n-2}}{2}$ ci sono
 - a) n cifre diverse da 0
 - b) n-1 cifre diverse da 0
 - c) 1 cifra diversa da 0
 - d) Nessuna delle precedenti
- 2) $|a \cdot x + b|_{\beta} =$ a) = $|a \cdot a|$
 - a) = $|a \cdot x + b|_{\beta}$
 - b) = $|a|_{\beta} \cdot |x|_{\beta} + |b|_{\beta}$
 - c) = $|a \cdot x + b|_{\beta} + \beta$
 - d) Nessuna delle precedenti
- 3) Un sottrattore a due cifre in base 6 ha in ingresso $X = 011\ 000$, $Y = 000\ 001$, $C_{in} = 0$. Lo stato di uscita è:
 - a) $Z = 010 \ 111, C_{out} = 0, Ow = 0$
 - b) $Z = 010 \ 101, C_{out} = 0, Ow = 0$
 - c) $Z = 010 \ 101, C_{out} = 0, Ow = 1$
 - d) Nessuna delle precedenti
- 4) Devo dividere un numero $X \in [16, 512]$ per un divisore $Y \in [2, 15]$. Posso usare un modulo divisore per naturali in base 2 così dimensionato:
 - a) dividendo su 10 bit, divisore su 4 bit
 - b) dividendo su 13 bit, divisore su 4 bit
 - c) dividendo su 16 bit, divisore su 8 bit
 - d) Nessuna delle precedenti
- 5) Dati X e Y, rappresentazioni in complemento alla radice dei numeri interi x e y,
 - a) x < y implies che X < Y
 - b) $x \le y$ implies che $X \le Y$
 - c) x < y implies che X > Y
 - d) Nessuna delle precedenti

- 6) L'uscita z della rete disegnata sopra:
 - a) Va ad 1 per circa Δ dopo il fronte di salita di x
 - b) Va ad 1 per circa Δ dopo il fronte di discesa di x
 - c) Va a 0 per circa Δ dopo il fronte di discesa di x
 - d) Nessuna delle precedenti

	00	01	11	10
00	-	0	1	1
01	0	0	1	-
11	0	0	0	0
10	-	1	0	•

- 7) Nella mappa di Karnaugh sopra disegnata gli implicanti principali sono
 - a) 1
 - b) 2
 - c) 3
 - d) Nessuna delle precedenti
- 8) Se in una sintesi PS dell'uscita z sostituisco le porte AND ed OR con il loro equivalente a NAND ottengo:
 - a) Una sintesi di z, a due livelli di logica
 - b) Una sintesi di z, ma non a due livelli di logica
 - c) Una sintesi di \bar{z} , a due livelli di logica
 - d) Nessuna delle precedenti

- 9) Il blocco di codice scritto sopra copia il contenuto della memoria dall'intervallo di indirizzi *X* all'intervallo di indirizzi *Y*, dove:
 - a) $X \equiv [s, s + 1023], Y \equiv [d, d + 1023]$
 - b) $X \equiv [s, s + 2047], Y \equiv [d, d + 2047]$
 - c) $X \equiv [s 1023, s], Y \equiv [d 1023, d]$
 - d) Nessuna delle precedenti

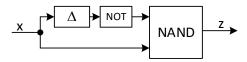
qui:

- 10) Il codice sopra non prosegue all'etichetta qui se AL:
 - a) è uguale a 1111 1111
 - b) Ha tutti i 7 bit meno significativi pari a 0
 - c) contiene la rappresentazione di un numero pari
 - d) Nessuna delle precedenti

	-
Domande di Reti Logiche – prima prova in itinere 14/11/2025 – primo turno	
Cognome e nome:	
Matricola:	
♦ - quadri	

C'è una sola risposta corretta per ogni domanda

Lo spazio bianco sul retro del foglio può essere usato per scrivere se necessario


qui:

- 1) Il codice sopra non prosegue all'etichetta qui se AL:
 - a) è uguale a 1111 1111
 - b) Ha tutti i 7 bit meno significativi pari a 0
 - c) contiene la rappresentazione di un numero pari
 - d) Nessuna delle precedenti

- 2) Il blocco di codice scritto sopra copia il contenuto della memoria dall'intervallo di indirizzi *X* all'intervallo di indirizzi *Y*, dove:
 - a) $X \equiv [s, s + 1023], Y \equiv [d, d + 1023]$
 - b) $X \equiv [s, s + 2047], Y \equiv [d, d + 2047]$
 - c) $X \equiv [s 1023, s], Y \equiv [d 1023, d]$
 - d) Nessuna delle precedenti

\	00	01	11	10
00	-	0	1	1
01	0	0	1	,
11	0	0	0	0
10	-	1	0	-

- 3) Nella mappa di Karnaugh sopra disegnata gli implicanti principali essenziali sono
 - a) 1
 - b) 2
 - c) 3
 - d) Nessuna delle precedenti

- 4) L'uscita z della rete disegnata sopra:
 - a) Va ad 1 per circa Δ dopo il fronte di salita di x
 - b) Va ad 1 per circa Δ dopo il fronte di discesa di x
 - c) Va a 0 per circa Δ dopo il fronte di salita di x
 - d) Nessuna delle precedenti
- 5) Se in una sintesi SP dell'uscita z sostituisco le porte AND ed OR con il loro equivalente a NOR ottengo:
 - a) Una sintesi di z, a due livelli di logica
 - b) Una sintesi di z, ma non a due livelli di logica
 - c) Una sintesi di \bar{z} , a due livelli di logica
 - d) Nessuna delle precedenti

- 6) Devo dividere un numero $X \in [100, 600]$ per un divisore $Y \in [2, 15]$. Posso usare un modulo divisore per naturali in base 2 così dimensionato:
 - a) dividendo su 10 bit, divisore su 4 bit
 - b) dividendo su 13 bit, divisore su 4 bit
 - c) dividendo su 16 bit, divisore su 8 bit
 - d) Nessuna delle precedenti

7)
$$|a \cdot x + b|_{\beta} =$$

a) =
$$||a \cdot x + b|_{\beta}|_{\beta}$$

b) =
$$|a|_{\beta} \cdot |x|_{\beta} + |b|_{\beta}$$

c) =
$$|a \cdot x + b|_{\beta} + \beta$$

- d) Nessuna delle precedenti
- 8) Nella rappresentazione in base $\beta>2$ (β pari) su n>2 cifre del numero naturale $\frac{\beta^{n-1}}{2}+1$ ci sono
 - a) n cifre diverse da 0
 - b) n-1 cifre diverse da 0
 - c) 1 cifra diversa da 0
 - d) Nessuna delle precedenti
- 9) Dati A e B, rappresentazioni in complemento alla radice dei numeri interi a e b,
 - a) A < B implica che a < b
 - b) $A \leq B$ implies the $a \leq b$
 - c) A > B implies the a < b
 - d) Nessuna delle precedenti
- 10) Un sommatore a due cifre in base 6 ha in ingresso $X = 101\ 101$, $Y = 101\ 101$, $C_{in} = 0$. Lo stato di uscita è:

a)
$$Z = 011\ 010, C_{out} = 1, Ow = 1$$

b)
$$Z = 011\ 010, C_{out} = 1, Ow = 0$$

c)
$$Z = 101 \ 100, C_{out} = 1, Ow = 0$$

d) Nessuna delle precedenti

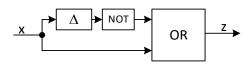
	Domande di Reti Logiche – prima prova in itinere 14/11/2025 – primo turno	
	Cognome e nome:	
	Matricola:	
• fiori		
♣ - fiori		

C'è **una sola risposta** corretta per ogni domanda Lo spazio bianco sul retro del foglio può essere usato per scrivere se necessario

MOV \$1024, %ECX LEA s, %ESI LEA d, %EDI STD REP MOVSB

- 1) Il blocco di codice scritto sopra copia il contenuto della memoria dall'intervallo di indirizzi *X* all'intervallo di indirizzi *Y*, dove:
 - a) $X \equiv [s, s + 1023], Y \equiv [d, d + 1023]$
 - b) $X \equiv [s, s + 2047], Y \equiv [d, d + 2047]$
 - c) $X \equiv [s 1023, s], Y \equiv [d 1023, d]$
 - d) Nessuna delle precedenti

SUB \$1, %AL JO via JC vai


qui:

- 2) Il codice sopra non prosegue all'etichetta qui se AL:
 - a) è uguale a 1111 1111
 - b) Ha tutti i 7 bit meno significativi pari a 0
 - c) contiene la rappresentazione di un numero pari
 - d) Nessuna delle precedenti
- 3) Nella rappresentazione in base $\beta>2$ (β pari) su n>2 cifre del numero naturale $\frac{\beta^{n-1}}{2}+\frac{\beta^{n-2}}{2}$ ci sono
 - a) n cifre diverse da 0
 - b) n-1 cifre diverse da 0
 - c) 1 cifra diversa da 0
 - d) Nessuna delle precedenti
- 4) $|a \cdot x + b|_{\beta} =$
 - a) = $||a \cdot x + b|_{\beta}|_{\beta}$
 - b) = $|a|_{\beta} \cdot |x|_{\beta} + |b|_{\beta}$
 - c) = $|a \cdot x + b|_{\beta} + \beta$
 - d) Nessuna delle precedenti
- 5) Un sottrattore a due cifre in base 6 ha in ingresso $X = 011\ 000$, $Y = 000\ 001$, $C_{in} = 0$. Lo stato di uscita è:
 - a) $Z = 010 \ 111, C_{out} = 0, Ow = 0$
 - b) $Z = 010 \ 101, C_{out} = 0, Ow = 0$
 - c) $Z = 010 \ 101, C_{out} = 0, Ow = 1$
 - d) Nessuna delle precedenti
- 6) Devo dividere un numero $X \in [16, 512]$ per un divisore $Y \in [2, 15]$. Posso usare un modulo divisore per naturali in base 2 così dimensionato:
 - a) dividendo su 10 bit, divisore su 4 bit
 - b) dividendo su 13 bit, divisore su 4 bit
 - c) dividendo su 16 bit, divisore su 8 bit
 - d) Nessuna delle precedenti

- 7) Dati X e Y, rappresentazioni in complemento alla radice dei numeri interi x e y,
 - a) x < y implies the X < Y
 - b) $x \le y$ implies che $X \le Y$
 - c) x < y implica che X > Y
 - d) Nessuna delle precedenti

	00	01	11	10
00	-	0	1	1
01	0	0	1	-
11	0	0	0	0
10	-	1	0	-

- 8) Nella mappa di Karnaugh sopra disegnata gli implicanti principali sono
 - a) 1
 - b) 2
 - c) 3
 - d) Nessuna delle precedenti

- 9) L'uscita z della rete disegnata sopra:
 - a) Va ad 1 per circa Δ dopo il fronte di salita di x
 - b) Va ad 1 per circa Δ dopo il fronte di discesa di x
 - c) Va a 0 per circa Δ dopo il fronte di discesa di x
 - d) Nessuna delle precedenti
- 10) Se in una sintesi PS dell'uscita z sostituisco le porte AND ed OR con il loro equivalente a NAND ottengo:
 - a) Una sintesi di z, a due livelli di logica
 - b) Una sintesi di z, ma non a due livelli di logica
 - c) Una sintesi di \bar{z} , a due livelli di logica
 - d) Nessuna delle precedenti

Domande di Reti Logiche – prima prova in itinere 14/11/2025 – primo turno
Cognome e nome:
Matricola:
◆ - picche